On Hardy fields and models of \mathbb{R}_{exp}

BY VINCENT BAGAYOKO

April 2022

1 Setting

I write $\mathcal{L}_{exp} = \langle 0, 1, +, -, \cdot, e^{\cdot}, \langle \rangle$ for the language of ordered exponential rings, \mathbb{R}_{exp} for the the real ordered exponential field, and T_{exp} for its elementary theory. Recall that T_{exp} is model complete in \mathcal{L}_{exp} by Wilkie's theorem, and that \mathbb{R}_{exp} is o-minimal.

I start with a few preliminary results that I actually didn't know were true in general.

Lemma 1. Let κ be an infinite cardinal and let \mathcal{L} be a first-order language. An \mathcal{L} -structure $\mathcal{M} = (M, \ldots)$ is κ -saturated if and only if for all subsets $A \subseteq M$ with $|A| < \kappa$, all 1-types $p(v_1) \in S_A^1(\mathcal{L})$ over A are satisfiable in \mathcal{M} .

Proposition 1. Let κ be an infinite cardinal. Let $\mathcal{M} = (M, <, ...)$ be an o-minimal structure with such that (M, <) is a dense linear order without endpoints. Assume that for all subsets $L, R \subseteq M$ with cardinality $|L|, |R| < \kappa$ and with L < R, there is an $m \in M$ with L < m < R. Then $\mathcal{M} = (M, <, ...)$ is κ -saturated.

Corollary 1. Let κ be an infinite uncountable cardinal. The ordered exponential field $\mathbf{No}(\kappa)$ of surreal numbers of length / birth day $< \kappa$ with Gonshor's exponential function is κ -saturated.

Proof. The underlying ordered set is κ -saturated by definition of surreal numbers and by a simple fact (found in [1, Chapter 1]): if L and R are sets of surreal numbers with L < R, then the simplest number $\{L|R\}$ with

$$L < \{L|R\} < R$$

has birthday $bd({L|R}) \leq sup {bd(a) + 1 : a \in L \cup R}.$

We also know, by a result of Ehrlich and van den Dries [2], that $\exp(\mathbf{No}(\kappa)) = \mathbf{No}(\kappa)^{>0}$ and that $(\mathbf{No}(\kappa), \exp)$ can be expanded into a model of $\mathbb{R}_{an,exp}$. Thus $(\mathbf{No}(\kappa), +, \times, \exp)$ is o-minimal.

Corollary 2. Each model of T_{exp} elementarily embeds into a $(No(\kappa), exp)$ for large enough κ .

I was asking myself the following questions:

Question 1. Let \mathcal{H} be a Hardy field containing \mathbb{R} . Assume that \mathcal{H} is real-closed and closed under exp and log. Is $(\mathcal{H}, +, \cdot, \exp)$ an elementary expansion of \mathbb{R}_{\exp} ?

Question 2. Let \mathcal{H} be a Hardy field containing \mathbb{R} and closed under exp. Does $(\mathcal{H}, +, \cdot, \exp)$ embed into an elementary extension of \mathbb{R}_{exp} ?

Lou found answers to those questions, which I next explain.

2 First question

In order to answer the first question, in the negative, we require three objects:

We write L for Hardy's field of logarithmico-exponential functions, i.e. germs at $+\infty$ that can be obtained as compositions of exp, log, and semialgebraic functions $(a, +\infty) \longrightarrow \mathbb{R}$. In other words, this is the closure of the field $\mathbb{R}(id)$ of rational functions under real closure, exp and log, which Hardy showed to be a Hardy field.

Let \mathcal{H}_{exp} denote the Hardy field of germs at $+\infty$ of \mathbb{R}_{exp} -definable functions $\mathbb{R} \longrightarrow \mathbb{R}$, allowing parameters. Note that given a positive infinite germ $f \in \mathcal{H}_{exp}^{>\mathbb{R}}$, its functional inverse f^{inv} is also definable with parameters in \mathbb{R}_{exp} , so $f^{inv} \in \mathcal{H}_{exp}$.

Let $\mathcal{R} := (R, +, \cdot, \exp)$ be non-standard, i.e. a proper elementary extension of \mathbb{R}_{exp} . Fix an $\xi \in R$ with $\xi > \mathbb{R}$. This exists since \mathbb{R} is the largest archimedean ordered field.

Proposition 2. There is a unique elementary embedding $\operatorname{ev}_{\xi}: \mathcal{H}_{\exp} \longrightarrow \mathcal{R}$ which commutes with \mathcal{L}_{\exp} -definable functions $\mathbb{R}^k \longrightarrow \mathbb{R} / \mathbb{R}^k \longrightarrow \mathbb{R}$ with parameters in \mathbb{R} and sends the germ id of the identity function onto ξ .

Proof. Cheking all details is a bit tedious but I think this is a well-known result. I just give the definition. Fix a representative f of a germ in \mathcal{H}_{exp} . There is a defining formula $\varphi_0[\bar{a}, v_1, v_2]$ for f with parameters $\bar{a} \in \mathbb{R}^m$ and a real number c_0 such that for all $t > c_0$, the number f(t) is unique with $\mathbb{R}_{exp} \models \varphi_0[\bar{a}, t, f(t)]$. Let $\varphi_1[\bar{b}, v_1, v_2]$ be a second defining formula with parameters $\bar{b} \in \mathbb{R}^n$ satisfying the same relation, with respect to the same germ, for a possibly distinct $c_1 \in \mathbb{R}$. In particular, we have

$$\mathbb{R}_{\exp} \vDash \forall t, (t > \max(c_0, c_1) \longrightarrow (\forall y, (\varphi_0[\bar{a}, t, y] \longleftrightarrow \varphi_1[b, t, y]))).$$
(1)

Recall that \mathbb{R}_{\exp} is o-minimal, so $\mathbb{R}_{\exp} \preccurlyeq \mathcal{H}_{\exp}$ is an elementary embedding. We have $\xi > c_0$, c_1 , so by (1), the unique element y_{ξ} of \mathcal{R} with $\mathcal{R} \models \varphi_0[\bar{a}, \xi, y_{\xi}]$ is also the unique element of \mathcal{R} satisfying $\varphi_1[\bar{b}, \xi, y_{\xi}]$. We define $\operatorname{ev}_{\xi}(f)$ to be that element y_{ξ} .

Similar arguments show that ev_{ξ} commutes with \mathbb{R}_{exp} -definable functions $\mathbb{R}^k \longrightarrow \mathbb{R}$, whence in particular that it is an embedding in \mathcal{L}_{exp} , hence an elementary embedding by model completeness.

Proposition 3. There is no \mathcal{L}_{exp} -embedding of \mathcal{H}_{exp} into L.

Proof. Assume for contradiction that there is such an embedding Ψ and write $\xi := \Psi(id)$. The field L is contained in \mathcal{H}_{exp} , and since Ψ must commute with semialgebraic functions as well as with exp and log, we have $\Psi(L) = L \circ \xi$. For the same reasons, we have $\Psi(L \circ \xi^{inv}) =$ L. The function Ψ is injective, so $L \circ \xi^{inv}$ must coincide with \mathcal{H}_{exp} , whence in $L = \mathcal{H}_{exp} \circ \xi =$ \mathcal{H}_{exp} . But this is known to be false: for instance it is a theorem of van den Dries, Macintyre and Marker that the germ $f \in \mathcal{H}_{exp}$ of the functional inverse of log \cdot (log \circ log) does not lie in L.

This raises a question:

Question 3. Is there a Liouville-closed Hardy field which is a model of \mathbb{R}_{exp} ? Is there an H-closed Hardy field which is a model of \mathbb{R}_{exp} ?

3 Second question

The answer to the second question is positive. In order to \mathcal{L}_{exp} -embed \mathcal{H} into an elementary extension of \mathbb{R}_{exp} , it is enough, since $\mathcal{H} \supseteq \mathbb{R}$ and by model completeness, to construe it as a substructure of a model of $\operatorname{Th}(\mathbb{R}_{exp})$.

Proposition 4. Let \mathcal{H} be a Hardy field containing \mathbb{R} and closed under exp. Then $(\mathcal{H}, +, \cdot, \exp)$ embeds into an elementary extension of \mathbb{R}_{exp} .

Proof. We need to prove that \mathcal{H} is a model of the universal theory $T_{\forall,\exp}$ of T_{\exp} . Consider a universal formula $\psi: \forall \overline{v}(\varphi[\overline{v}])$ where $\varphi[\overline{v}]$ is a boolean combination of atomic \mathcal{L}_{\exp} -formulas, hence, up to equivalence modulo the theory of rings, of exponential-polynomial equations, inequalities... We can assume that $\varphi[\overline{v}]$ is in disjunctive conjunctive form

$$\varphi[\overline{v}]: \bigvee_{i \in I} \bigwedge_{j \in J} P_{i,j}(v_1, \dots, v_n, \mathrm{e}^{v_1}, \dots, \mathrm{e}^{v_n}) \square_{i,j} 0,$$

where each $P_{i,j} \in \mathbb{R}[X_1, \ldots, X_{2n}]$, each symbol $\Box_{i,j}$ is among =, <, and >, and I, J are finite sets.

Assume that ψ is valid in \mathbb{R}_{exp} and let f_1, \ldots, f_n be representatives of germs in \mathcal{H} . Since I is finite, there are a cofinal subset $X \subseteq \mathbb{R}$ and an $i \in I$ for which we have

$$\bigwedge_{j} P_{i,j}(f_1(t),\ldots,f_n(t),\mathrm{e}^{f_1(t)},\ldots,\mathrm{e}^{f_n(t)})\square_{i,j}0$$

whenever $t \in X$. Since \mathcal{H} is a Hardy field, the sign of each function

$$t \mapsto P_{i,j}(f_1(t),\ldots,f_n(t),\mathrm{e}^{f_1(t)},\ldots,\mathrm{e}^{f_n(t)})$$

for $j \in J$ is stationnary. So we actually have $\bigwedge_j P_{i,j}(f_1(t), \ldots, f_n(t), e^{f_1(t)}, \ldots, e^{f_n(t)}) \square_{i,j} 0$ for all sufficiently large $t \in \mathbb{R}$. This means that $\mathcal{H} \models \bigwedge_j P_{i,j}(f_1, \ldots, f_n, e^{f_1}, \ldots, e^{f_n}) \square_{i,j} 0$, whence in particular that $\mathcal{H} \models \varphi[f_1, \ldots, f_n]$. Therefore ψ is valid in \mathcal{H} . This shows that $\mathcal{H} \models T_{\forall, \exp}$ embeds into a model of T_{\exp} . \square

Corollary 3. Every Hardy field \mathcal{H} closed under exp embeds into (No, exp) as an ordered exponential field.

Proof. We first embed \mathcal{H} into a Hardy field $\mathcal{H}^* \supseteq \mathbb{R}$ which is closed under exp. This is just done by closing $\mathcal{H}(\mathbb{R})$ under exp as explained in Lou's lecture. Then embed \mathcal{H}^* into a model of T_{exp} using Proposition 4, and conclude with Corollary 2.

Bibliography

- [1] H. Gonshor. An Introduction to the Theory of Surreal Numbers. Cambridge Univ. Press, 1986.
- [2] L. van den Dries and P. Ehrlich. Fields of surreal numbers and exponentiation. Fundamenta Mathematicae, 167(2):173-188, 2001.